Monday, December 9, 2013

Cancer

Cancer



Cancer , medically known as metastasis , is a wide range of diseases involving unregulated cell growth . In cancer , cells divide and grow uncontrollably , forming malignant tumors , and invade nearby parts of the body . Cancer has also spread to more distant parts of the body through the blood or lymphatic system . Not all tumors are cancerous ; benign tumors do not invade nearby tissues or spread throughout the body.   There are more than 200 different types of cancer known that affect humans.
Causes of cancer are varied and complex , and only partially understood . It is known that a lot of things that increase the risk of cancer , including tobacco use, dietary factors , and some infectious diseases , exposure to radiation , and physical inactivity , obesity, and environmental pollutants . These factors can directly damage the genes or combine with existing errors can cause the cells to cancerous mutations . be attributed to about 5-10 % of cancer cases directly to the inherited genetic defects . can prevent many of the diseases of cancer by not smoking, eating more fruits and vegetables and whole grains , and eat less meat and refined carbohydrates , and maintain a healthy weight , exercising, and reducing exposure to sunlight , and being vaccinated against some infectious diseases .
The cancer can be detected in a number of ways , including the presence of some of the signs and symptoms , tests , or medical imaging . Once the cancer has been detected possible is diagnosed by microscopic examination of the tissue sample . Is usually treated with cancer chemotherapy , radiation therapy and surgery. The chances of survival of the disease vary greatly depending on the type and location of the cancer and the extent of the disease at the beginning of treatment. While cancer can affect people of all ages , and a few types of cancer are more common in children , the risk of cancer generally increases with age . In 2007, cancer caused about 13 % of all human deaths worldwide ( 7.9 million ) . Prices go up as more people live to old age and lifestyle changes occur as comprehensive in the developing world .
How cancer spreads - scientists reported in Nature Communications (October 2012 issue) that they have. It has something to do with their adhesion (stickiness) properties. Certain molecular interactions between cells and the scaffolding that holds them in place (extracellular matrix) cause them to become unstuck at the original tumor site, they become dislodged, move on and then reattach themselves at a new site.
The researchers say this discovery is important because cancer mortality is mainly due to metastatic tumors, those that grow from cells that have traveled from their original site to another part of the body. Only 10% of cancer deaths are caused by the primary tumors.
The scientists, from the Massachusetts Institute of Technology, say that finding a way to stop cancer cells from sticking to new sites could interfere with metastatic disease, and halt the growth of secondary tumors.
In 2007, cancer claimed the lives of about 7.6 million people in the world. Physicians and researchers who specialize in the study, diagnosis, treatment, and prevention of cancer are called oncologists.
Malignant cells are more agile than non-malignant ones 
scientists from the Physical Sciences-Oncology Centers, USA, reported in the journal Scientific Reports (April 2013 issue). Malignant cells can pass more easily through smaller gaps, as well as applying a much greater force on their environment compared to other cells.
Professor Robert Austin and team created a new catalogue of the physical and chemical features of cancerous cells with over 100 scientists from 20 different centers across the United States.
The authors believe their catalogue will help oncologists detect cancerous cells in patients early on, thus preventing the spread of the disease to other parts of the body.
Prof. Austin said "By bringing together different types of experimental expertise to systematically compare metastatic and non-metastatic cells, we have advanced our knowledge of how metastasis occurs."
Cancer can be detected in a number of ways, including the presence of certain 
Definitions
There is no one definition that describes all cancers. They are a large family of diseases which form a subset of neoplasms, which show some features that suggest of malignancy.  A neoplasm or tumor is a group of cells that have undergone unregulated growth, and will often form a mass or lump, but may be distributed diffusely.
Six characteristics of malignancies have been proposed: sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling  replicative immortality, inducing angiogenesis, and activating invasion and metastasis. The progression from normal cells to cells that can form a discernible mass to outright cancer involves multiple steps.
Signs and symptoms
Symptoms of cancer metastasis depend on the location of the tumor.
When cancer begins it invariably produces no symptoms with signs and symptoms only appearing as the mass continues to grow or ulcerates. The findings that result depend on the type and location of the cancer. Few symptoms are specific, with many of them also frequently occurring in individuals who have other conditions. Cancer is the new "great imitator". Thus it is not uncommon for people diagnosed with cancer to have been treated for other diseases to which it was assumed their symptoms were due.
Local effects
Local symptoms may occur due to the mass of the tumor or its ulceration. For example, mass effects from lung cancer can cause blockage of the bronchus resulting in cough or pneumonia; esophageal cancer can cause narrowing of the esophagus, making it difficult or painful to swallow; and colorectal cancer may lead to narrowing or blockages in the bowel, resulting in changes in bowel habits. Masses in breasts or testicles may be easily felt. Ulceration can cause bleeding which, if it occurs in the lung, will lead to coughing up blood, in the bowels to anemia or rectal bleeding, in the bladder to blood in the urine, and in the uterus to vaginal bleeding. Although localized pain may occur in advanced cancer, the initial swelling is usually painless. Some cancers can cause build up of fluid within the chest or abdomen.
Systemic symptoms
General symptoms occur due to distant effects of the cancer that are not related to direct or metastatic spread. These may include: unintentional weight loss, fever, being excessively tired, and changes to the skin. Hodgkin disease, leukemias, and cancers of the liver or kidney can cause a persistent fever of unknown origin.
Specific constellations of systemic symptoms, termed paraneoplastic phenomena, may occur with some cancers. Examples include the appearance of myasthenia gravis in thymoma and clubbing in lung cancer.




Metastasis
Symptoms of metastasis are due to the spread of cancer to other locations in the body. They can include enlarged lymph nodes (which can be felt or sometimes seen under the skin and are typically hard), hepatomegaly (enlarged liver) or splenomegaly (enlarged spleen) which can be felt in the abdomen, pain or fracture of affected bones, and neurological symptoms.Most cancer deaths are due to cancer that has spread from its primary site to other organs (metastasized).
Causes
Cancers are primarily an environmental disease with 90–95% of cases attributed to environmental factors and 5–10% due to genetics. Environmental, as used by cancer researchers, means any cause that is not inherited genetically, not merely pollution. Common environmental factors that contribute to cancer death include tobacco (25–30%), diet and obesity (30–35%), infections (15–20%), radiation (both ionizing and non-ionizing, up to 10%), stress, lack of physical activity, and environmental pollutants.
It is nearly impossible to prove what caused a cancer in any individual, because most cancers have multiple possible causes. For example, if a person who uses tobacco heavily develops lung cancer, then it was probably caused by the tobacco use, but since everyone has a small chance of developing lung cancer as a result of air pollution or radiation, then there is a small chance that the cancer developed because of air pollution or radiation.



Further information :
Alcohol and cancer and Smoking and cancer
The incidence of lung cancer is highly correlated with smoking.
Cancer pathogenesis is traceable back to DNA mutations that impact cell growth and metastasis. Substances that cause DNA mutations are known as mutagens, and mutagens that cause cancers are known as carcinogens. Particular substances have been linked to specific types of cancer. Tobacco smoking is associated with many forms of cancer, and causes 90% of lung cancer.
Many mutagens are also carcinogens, but some carcinogens are not mutagens. Alcohol is an example of a chemical carcinogen that is not a mutagen. In Western Europe 10% of cancers in males and 3% of cancers in females are attributed to alcohol.
Decades of research has demonstrated the link between tobacco use and cancer in the lung, larynx, head, neck, stomach, bladder, kidney, esophagus and pancreas. Tobacco smoke contains over fifty known carcinogens, including nitrosamines and polycyclic aromatic hydrocarbons. Tobacco is responsible for about one in three of all cancer deaths in the developed world, and about one in five worldwide. Lung cancer death rates in the United States have mirrored smoking patterns, with increases in smoking followed by dramatic increases in lung cancer death rates and, more recently, decreases in smoking rates since the 1950s followed by decreases in lung cancer death rates in men since 1990. However, the numbers of smokers worldwide is still rising, leading to what some organizations have described as the tobacco epidemic.
Cancer related to one's occupation is believed to represent between 2–20% of all cases. Every year, at least 200,000 people die worldwide from cancer related to their workplace.Most cancer deaths caused by occupational risk factors occur in the developed world.It is estimated that approximately 20,000 cancer deaths and 40,000 new cases of cancer each year in the U.S. are attributable to occupation.Millions of workers run the risk of developing cancers such as lung cancer and mesothelioma from inhaling asbestos fibers and tobacco smoke, or leukemia from exposure to benzene at their workplaces
Diet and exercise
Diet, physical inactivity, and obesity are related to approximately 30–35% of cancer deaths. In the United States excess body weight is associated with the development of many types of cancer and is a factor in 14–20% of all cancer deaths. Physical inactivity is believed to contribute to cancer risk not only through its effect on body weight but also through negative effects on immune system and endocrine system. More than half of the effect from diet is due to overnutrition rather than from eating too little healthy foods.
Diets that are low in vegetables, fruits and whole grains, and high in processed or red meats are linked with a number of cancers. A high-salt diet is linked to gastric cancer, aflatoxin B1, a frequent food contaminate, with liver cancer, and Betel nut chewing with oral cancer.This may partly explain differences in cancer incidence in different countries. For example, gastric cancer is more common in Japan due to its high-salt diet and colon cancer is more common in the United States. Immigrants develop the risk of their new country, often within one generation, suggesting a substantial link between diet and cancer.

Infection
Worldwide approximately 18% of cancer deaths are related to infectious diseases. This proportion varies in different regions of the world from a high of 25% in Africa to less than 10% in the developed world. Viruses are the usual infectious agents that cause cancer but bacteria and parasites may also have an effect.
A virus that can cause cancer is called an oncovirus. These include human papillomavirus (cervical carcinoma), Epstein–Barr virus (B-cell lymphoproliferative disease and nasopharyngeal carcinoma), Kaposi's sarcoma herpesvirus (Kaposi's sarcoma and primary effusion lymphomas), hepatitis B and hepatitis C viruses (hepatocellular carcinoma), and Human T-cell leukemia virus-1 (T-cell leukemias). Bacterial infection may also increase the risk of cancer, as seen in Helicobacter pylori-induced gastric carcinoma. Parasitic infections strongly associated with cancer include Schistosoma haematobium (squamous cell carcinoma of the bladder) and the liver flukes, Opisthorchis viverrini and Clonorchis sinensis (cholangiocarcinoma).
Radiation
Up to 10% of invasive cancers are related to radiation exposure, including both ionizing radiation and non-ionizing ultraviolet radiation. Additionally, the vast majority of non-invasive cancers are non-melanoma skin cancers caused by non-ionizing ultraviolet radiation.
Sources of ionizing radiation include medical imaging, and radon gas. Radiation can cause cancer in most parts of the body, in all animals, and at any age, although radiation-induced solid tumors usually take 10–15 years, and can take up to 40 years, to become clinically manifest, and radiation-induced leukemias typically require 2–10 years to appear. Some people, such as those with nevoid basal cell carcinoma syndrome or retinoblastoma, are more susceptible than average to developing cancer from radiation exposure. Children and adolescents are twice as likely to develop radiation-induced leukemia as adults; radiation exposure before birth has ten times the effect. Ionizing radiation is not a particularly strong mutagen. Residential exposure to radon gas, for example, has similar cancer risks as passive smoking. Low-dose exposures, such as living near a nuclear power plant, are generally believed to have no or very little effect on cancer development. Radiation is a more potent source of cancer when it is combined with other cancer-causing agents, such as radon gas exposure plus smoking tobacco.
Unlike chemical or physical triggers for cancer, ionizing radiation hits molecules within cells randomly. If it happens to strike a chromosome, it can break the chromosome, result in an abnormal number of chromosomes, inactivate one or more genes in the part of the chromosome that it hit, delete parts of the DNA sequence, cause chromosome translocations, or cause other types of chromosome abnormalities. Major damage normally results in the cell dying, but smaller damage may leave a stable, partly functional cell that may be capable of proliferating and developing into cancer, especially if tumor suppressor genes were damaged by the radiation. Three independent stages appear to be involved in the creation of cancer with ionizing radiation: morphological changes to the cell, acquiring cellular immortality (losing normal, life-limiting cell regulatory processes), and adaptations that favor formation of a tumor. Even if the radiation particle does not strike the DNA directly, it triggers responses from cells that indirectly increase the likelihood of mutations.
Medical use of ionizing radiation is a growing source of radiation-induced cancers. Ionizing radiation may be used to treat other cancers, but this may, in some cases, induce a second form of cancer. It is also used in some kinds of medical imaging. One report estimates that approximately 29,000 future cancers could be related to the approximately 70 million CT scans performed in the US in 2007. It is estimated that 0.4% of cancers in 2007 in the United States are due to CTs performed in the past and that this may increase to as high as 1.5–2% with rates of CT usage during this same time period.
Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies. Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.
Non-ionizing radio frequency radiation from mobile phones, electric power transmission, and other similar sources have been described as a possible carcinogen by the World Health Organization's International Agency for Research on Cancer. However, studies have not found a consistent link between cell phone radiation and cancer risk.
Heredity
The vast majority of cancers are non-hereditary ("sporadic cancers"). Hereditary cancers are primarily caused by an inherited genetic defect. Less than 0.3% of the population are carriers of a genetic mutation which has a large effect on cancer risk and these cause less than 3–10% of all cancer. Some of these syndromes include: certain inherited mutations in the genes BRCA1 and BRCA2 with a more than 75% risk of breast cancer and ovarian cancer, and hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome) which is present in about 3% of people with colorectal cancer, among others.

Physical agents
Some substances cause cancer primarily through their physical, rather than chemical, effects on cells.
A prominent example of this is prolonged exposure to asbestos, naturally occurring mineral fibers which are a major cause of mesothelioma, which is a cancer of the serous membrane, usually the serous membrane surrounding the lungs. Other substances in this category, including both naturally occurring and synthetic asbestos-like fibers such as wollastonite, attapulgite, glass wool, and rock wool, are believed to have similar effects.
Non-fibrous particulate materials that cause cancer include powdered metallic cobalt and nickel, and crystalline silica (quartz, cristobalite, and tridymite).
Usually, physical carcinogens must get inside the body (such as through inhaling tiny pieces) and require years of exposure to develop cancer.
Physical trauma resulting in cancer is relatively rare. Claims that breaking bones resulted in bone cancer, for example, have never been proven. Similarly, physical trauma is not accepted as a cause for cervical cancer, breast cancer, or brain cancer.
One accepted source is frequent, long-term application of hot objects to the body. It is possible that repeated burns on the same part of the body, such as those produced by kanger and kairo heaters (charcoal hand warmers), may produce skin cancer, especially if carcinogenic chemicals are also present. Frequently drinking scalding hot tea may produce esophageal cancer.
Generally, it is believed that the cancer arises, or a pre-existing cancer is encouraged, during the process of repairing the trauma, rather than the cancer being caused directly by the trauma. However, repeated injuries to the same tissues might promote excessive cell proliferation, which could then increase the odds of a cancerous mutation. There is no evidence that inflammation itself causes cancer.
Hormones
Some hormones play a role in the development of cancer by promoting cell proliferation.  Insulin-like growth factors and their binding proteins play a key role in cancer cell proliferation, differentiation and apoptosis, suggesting possible involvement in carcinogenesis.
Hormones are important agents in sex-related cancers such as cancer of the breast, endometrium, prostate, ovary, and testis, and also of thyroid cancer and bone cancer.For example, the daughters of women who have breast cancer have significantly higher levels of estrogen and progesterone than the daughters of women without breast cancer. These higher hormone levels may explain why these women have higher risk of breast cancer, even in the absence of a breast-cancer gene. Similarly, men of African ancestry have significantly higher levels of testosterone than men of European ancestry, and have a correspondingly much higher level of prostate cancer. Men of Asian ancestry, with the lowest levels of testosterone-activating androstanediol glucuronide, have the lowest levels of prostate cancer.
Other factors are also relevant: obese people have higher levels of some hormones associated with cancer and a higher rate of those cancers. Women who take hormone replacement therapy have a higher risk of developing cancers associated with those hormones. On the other hand, people who exercise far more than average have lower levels of these hormones, and lower risk of cancer. Osteosarcoma may be promoted by growth hormones. Some treatments and prevention approaches leverage this cause by artificially reducing hormone levels, and thus discouraging hormone-sensitive cancers.
Other
Excepting the rare transmissions that occur with pregnancies and only a marginal few organ donors, cancer is generally not a transmissible disease. The main reason for this is tissue graft rejection caused by MHC incompatibility. In humans and other vertebrates, the immune system uses MHC antigens to differentiate between "self" and "non-self" cells because these antigens are different from person to person. When non-self antigens are encountered, the immune system reacts against the appropriate cell. Such reactions may protect against tumour cell engraftment by eliminating implanted cells. In the United States, approximately 3,500 pregnant women have a malignancy annually, and transplacental transmission of acute leukemia, lymphoma, melanoma and carcinoma from mother to fetus has been observed. The development of donor-derived tumors from organ transplants is exceedingly rare. The main cause of organ transplant associated tumors seems to be malignant melanoma, that was undetected at the time of organ harvest. Job stress does not appear to be a significant factor at least in lung, colorectal, breast and prostate cancers.
Pathophysiology
Cancers are caused by a series of mutations. Each mutation alters the behavior of the cell somewhat.
Genetic alterations
Cancer is fundamentally a disease of tissue growth regulation failure. In order for a normal cell to transform into a cancer cell, the genes which regulate cell growth and differentiation must be altered.
The affected genes are divided into two broad categories. Oncogenes are genes which promote cell growth and reproduction. Tumor suppressor genes are genes which inhibit cell division and survival. Malignant transformation can occur through the formation of novel oncogenes, the inappropriate over-expression of normal oncogenes, or by the under-expression or disabling of tumor suppressor genes. Typically, changes in many genes are required to transform a normal cell into a cancer cell.
Genetic changes can occur at different levels and by different mechanisms. The gain or loss of an entire chromosome can occur through errors in mitosis. More common are mutations, which are changes in the nucleotide sequence of genomic DNA.
Large-scale mutations involve the deletion or gain of a portion of a chromosome. Genomic amplification occurs when a cell gains many copies (often 20 or more) of a small chromosomal locus, usually containing one or more oncogenes and adjacent genetic material. Translocation occurs when two separate chromosomal regions become abnormally fused, often at a characteristic location. A well-known example of this is the Philadelphia chromosome, or translocation of chromosomes 9 and 22, which occurs in chronic myelogenous leukemia, and results in production of the BCR-abl fusion protein, an oncogenic tyrosine kinase.
Small-scale mutations include point mutations, deletions, and insertions, which may occur in the promoter region of a gene and affect its expression, or may occur in the gene's coding sequence and alter the function or stability of its protein product. Disruption of a single gene may also result from integration of genomic material from a DNA virus or retrovirus, and resulting in the expression of viral oncogenes in the affected cell and its descendants.
Replication of the enormous amount of data contained within the DNA of living cells will probabilistically result in some errors (mutations). Complex error correction and prevention is built into the process, and safeguards the cell against cancer. If significant error occurs, the damaged cell can "self-destruct" through programmed cell death, termed apoptosis. If the error control processes fail, then the mutations will survive and be passed along to daughter cells.
Some environments make errors more likely to arise and propagate. Such environments can include the presence of disruptive substances called carcinogens, repeated physical injury, heat, ionising radiation, or hypoxia.
The errors which cause cancer are self-amplifying and compounding, for example:
A mutation in the error-correcting machinery of a cell might cause that cell and its children to accumulate errors more rapidly.
A further mutation in an oncogene might cause the cell to reproduce more rapidly and more frequently than its normal counterparts.
A further mutation may cause loss of a tumour suppressor gene, disrupting the apoptosis signalling pathway and resulting in the cell becoming immortal.
A further mutation in signaling machinery of the cell might send error-causing signals to nearby cells.
The transformation of normal cell into cancer is akin to a chain reaction caused by initial errors, which compound into more severe errors, each progressively allowing the cell to escape the controls that limit normal tissue growth. This rebellion-like scenario becomes an undesirable survival of the fittest, where the driving forces of evolution work against the body's design and enforcement of order. Once cancer has begun to develop, this ongoing
process, termed clonal evolution drives progression towards more invasive stages.
Epigenetic alterations
The central role of DNA damage and epigenetic defects in DNA repair genes in carcinogenesis
Classically, cancer has been viewed as a set of diseases that are driven by progressive genetic abnormalities that include mutations in tumour-suppressor genes and oncogenes, and chromosomal abnormalities. However, it has become apparent that cancer is also driven by epigenetic alterations.
Epigenetic alterations refer to functionally relevant modifications to the genome that do not involve a change in the nucleotide sequence. Examples of such modifications are changes in DNA methylation (hypermethylation and hypomethylation) and histone modification  and changes in chromosomal architecture (caused by inappropriate expression of proteins such as HMGA2 or HMGA1). Each of these epigenetic alterations serves to regulate gene expression without altering the underlying DNA sequence. These changes may remain through cell divisions, last for multiple generations, and can be considered to be epimutations (equivalent to mutations).
Epigenetic alterations occur frequently in cancers. As an example, Schnekenburger and Diederich listed protein coding genes that were frequently altered in their methylation in association with colon cancer. These included 147 hypermethylated and 27 hypomethylated genes. Of the hypermethylated genes, 10 were hypermethylated in 100% of colon cancers, and many others were hypermethylated in more than 50% of colon cancers.
While large numbers of epigenetic alterations are found in cancers, the epigenetic alterations in DNA repair genes, causing reduced expression of DNA repair proteins, may be of particular importance. Such alterations are thought to occur early in progression to cancer and to be a likely cause of the genetic instability characteristic of cancers.
Reduced expression of DNA repair genes causes deficient DNA repair. This is shown in the figure at the 4th level from the top. (In the figure, red wording indicates the central role of DNA damage and defects in DNA repair in progression to cancer.) When DNA repair is deficient DNA damages remain in cells at a higher than usual level (5th level from the top in figure), and these excess damages cause increased frequencies of mutation and/or epimutation (6th level from top of figure). Mutation rates increase substantially in cells defective in DNA mismatch repair or in homologous recombinational repair (HRR). Chromosomal rearrangements and aneuploidy also increase in HRR defective cells.
Higher levels of DNA damage not only cause increased mutation (right side of figure), but also cause increased epimutation. During repair of DNA double strand breaks, or repair of other DNA damages, incompletely cleared sites of repair can cause epigenetic gene silencing.
Deficient expression of DNA repair proteins due to an inherited mutation can cause increased risk of cancer. Individuals with an inherited impairment in any of 34 DNA repair genes (see article DNA repair-deficiency disorder) have an increased risk of cancer, with some defects causing up to a 100% lifetime chance of cancer (e.g. p53 mutations). Germ line DNA repair mutations are noted in a box on the left side of the figure, with an arrow indicating their contribution to DNA repair deficiency. However, such germline mutations (which cause highly penetrant cancer syndromes) are the cause of only about 1 percent of cancers.
In sporadic cancers, deficiencies in DNA repair are occasionally caused by a mutation in a DNA repair gene, but are much more frequently caused by epigenetic alterations that reduce or silence expression of DNA repair genes. This is indicated in the figure at the 3rd level from the top. For example, when 113 colorectal cancers were examined in sequence, only four had a missense mutation in the DNA repair gene MGMT, while the majority had reduced MGMT expression due to methylation of the MGMT promoter region (an epigenetic alteration). Five different studies found that between 40% and 90% of colorectal cancers have reduced MGMT expression due to methylation of the MGMT promoter region.
Similarly, out of 119 cases of mismatch repair-deficient colorectal cancers that lacked DNA repair gene PMS2 expression, PMS2 was deficient in 6 due to mutations in the PMS2 gene, while in 103 cases PMS2 expression was deficient because its pairing partner MLH1 was repressed due to promoter methylation (PMS2 protein is unstable in the absence of MLH1). In the other 10 cases, loss of PMS2 expression was likely due to epigenetic overexpression of the microRNA, miR-155, which down-regulates MLH1.
In further examples, tabulated in the article Epigenetics, epigenetic defects were found at frequencies of between 13%-100% for the DNA repair genes BRCA1, WRN, FANCB, FANCF, MGMT, MLH1, MSH2, MSH4, ERCC1, XPF, NEIL1 and ATM in cancers including those in breast, ovarian, colorectal, and head and neck. In particular, two or more epigenetic deficiencies in expression of ERCC1, XPF and/or PMS2 occurred simultaneously in the majority of the 49 colon cancers evaluated by Facista et al.
Many studies of heavy metal-induced carcinogenesis show that such heavy metals cause reduction in expression of DNA repair enzymes, some through epigenetic mechanisms. In some cases, DNA repair inhibition is proposed to be a predominant mechanism in heavy metal-induced carcinogenicity. For example, one group of studies shows that arsenic inhibits the DNA repair genes PARP, XRCC1, Ligase III, Ligase IV, DNA POLB, XRCC4, DNA PKCS, TOPO2B, OGG1, ERCC1, XPF, XPB, XPC, XPE and P53. Another group of studies shows that cadmium inhibits the DNA repair genes MSH2, ERCC1, XRCC1, OGG1, MSH6, DNA-PK, XPD and XPC.
Cancers usually arise from an assemblage of mutations and epimutations that confer a selective advantage leading to clonal expansion (see Field defects in progression to cancer). Mutations, however, may not be as frequent in cancers as epigenetic alterations. An average cancer of the breast or colon can have about 60 to 70 protein-altering mutations, of which about 3 or 4 may be “driver” mutations, and the remaining ones may be “passenger” mutations. Colon cancers were also found to have an average of 17 duplicated segments of chromosomes, 28 deleted segments of chromosomes and up to 10 translocations. However, by comparison, epigenetic alterations appear to be more frequent in colon cancers. There are large numbers of hypermethylated genes in colon cancer, as discussed above.
In addition, there are frequent epigenetic alterations of the DNA sequences coding for small RNAs called microRNAs (or miRNAs). MiRNAs do not code for proteins, but can “target” protein-coding genes and reduce their expression. For instance, epigenetic increase in CpG island methylation of the DNA sequence encoding miR-137 reduces its expression and is a frequent early epigenetic event in colorectal carcinogenesis, occurring in 81% of colon cancers and in 14% of the normal appearing colonic mucosa adjacent to the cancers. Silencing of miR-137 can affect expression of over 400 genes, the targets of this miRNA. Changes in the level of miR-137 expression cause altered mRNA expression of the target genes by 2 to 20-fold and corresponding, though often smaller, changes in expression of the protein products of the genes. Other microRNAs, with likely comparable numbers of target genes, are even more frequently epigenetically altered in colonic field defects and in the colon cancers that arise from them. These include miR-124a, miR-34b/c and miR-342 which are silenced by CpG island methylation of their encoding DNA sequences in primary tumors at rates of 99%, 93% and 86%, respectively, and in the adjacent normal appearing mucosa at rates of 59%, 26% and 56%, respectively. Thus, epigenetic alterations are a major source of changes in gene expression, important in cancer.
As pointed out above under genetic alterations, cancer is caused by failure to regulate tissue growth, when the genes which regulate cell growth and differentiation are altered. It has become clear that these alterations are caused by both DNA sequence mutation in oncogenes and tumor suppressor genes as well as by epigenetic alterations. The epigenetic deficiencies in expression of DNA repair genes, in particular, likely cause an increased frequency of mutations, some of which then occur in oncogenes and tumor suppressor genes.
Diagnosis
Chest x-ray showing lung cancer in the left lung.
Most cancers are initially recognized either because of the appearance of signs or symptoms or through screening. Neither of these lead to a definitive diagnosis, which requires the examination of a tissue sample by a pathologist. People with suspected cancer are investigated with medical tests. These commonly include blood tests, X-rays, CT scans and endoscopy.
Most people are distressed to learn that they have cancer. They may become extremely anxious and depressed. The risk of suicide in people with cancer is approximately double the normal risk.



Classification
Further information: List of cancer types and List of oncology-related terms
Cancers are classified by the type of cell that the tumor cells resemble and is therefore presumed to be the origin of the tumor. These types include:
Carcinoma: Cancers derived from epithelial cells. This group includes many of the most common cancers, particularly in the aged, and include nearly all those developing in the breast, prostate, lung, pancreas, and colon.
Sarcoma: Cancers arising from connective tissue (i.e. bone, cartilage, fat, nerve), each of which develop from cells originating in mesenchymal cells outside the bone marrow.
Lymphoma and leukemia: These two classes of cancer arise from hematopoietic (blood-forming) cells that leave the marrow and tend to mature in the lymph nodes and blood, respectively. Leukemia is the most common type of cancer in children accounting for about 30%.
Germ cell tumor: Cancers derived from pluripotent cells, most often presenting in the testicle or the ovary (seminoma and dysgerminoma, respectively).
Blastoma: Cancers derived from immature "precursor" cells or embryonic tissue. Blastomas are more common in children than in older adults.
Cancers are usually named using -carcinoma, -sarcoma or -blastoma as a suffix, with the Latin or Greek word for the organ or tissue of origin as the root. For example, cancers of the liver parenchyma arising from malignant epithelial cells is called hepatocarcinoma, while a malignancy arising from primitive liver precursor cells is called a hepatoblastoma, and a cancer arising from fat cells is called a liposarcoma. For some common cancers, the English organ name is used. For example, the most common type of breast cancer is called ductal carcinoma of the breast. Here, the adjective ductal refers to the appearance of the cancer under the microscope, which suggests that it has originated in the milk ducts.
Benign tumors (which are not cancers) are named using -oma as a suffix with the organ name as the root. For example, a benign tumor of smooth muscle cells is called a leiomyoma (the common name of this frequently occurring benign tumor in the uterus is fibroid). Confusingly, some types of cancer use the -noma suffix, examples including melanoma and seminoma.
Some types of cancer are named for the size and shape of the cells under a microscope, such as giant cell carcinoma, spindle cell carcinoma, and small-cell carcinoma.
Pathology
The tissue diagnosis given by the pathologist indicates the type of cell that is proliferating, its histological grade, genetic abnormalities, and other features of the tumor. Together, this information is useful to evaluate the prognosis of the patient and to choose the best treatment. Cytogenetics and immunohistochemistry are other types of testing that the pathologist may perform on the tissue specimen. These tests may provide information about the molecular changes (such as mutations, fusion genes, and numerical chromosome changes) that has happened in the cancer cells, and may thus also indicate the future behavior of the cancer (prognosis) and best treatment.
An invasive ductal carcinoma of the breast (pale area at the center) surrounded by spikes of whitish scar tissue and yellow fatty tissue.
An invasive colorectal carcinoma (top center) in a colectomy specimen.
A squamous-cell carcinoma (the whitish tumor) near the bronchi in a lung specimen.
A large invasive ductal carcinoma in a mastectomy specimen.
Prevention
Cancer prevention is defined as active measures to decrease the risk of cancer. The vast majority of cancer cases are due to environmental risk factors, and many, but not all, of these environmental factors are controllable lifestyle choices. Thus, cancer is considered a largely preventable disease. Greater than 30% of cancer deaths could be prevented by avoiding risk factors including: tobacco, overweight / obesity, an insufficient diet, physical inactivity, alcohol, sexually transmitted infections, and air pollution. Not all environmental causes are controllable, such as naturally occurring background radiation, and other cases of cancer are caused through hereditary genetic disorders, and thus it is not possible to prevent all cases of cancer.
Dietary
While many dietary recommendations have been proposed to reduce the risk of cancer, the evidence to support them is not definitive. The primary dietary factors that increase risk are obesity and alcohol consumption; with a diet low in fruits and vegetables and high in red meat being implicated but not confirmed. Consumption of coffee is associated with a reduced risk of liver cancer. Studies have linked consumption of red or processed meat to an increased risk of breast cancer, colon cancer, and pancreatic cancer, a phenomenon which could be due to the presence of carcinogens in meats cooked at high temperatures. Dietary recommendations for cancer prevention typically include an emphasis on vegetables, fruit, whole grains, and fish, and an avoidance of processed and red meat (beef, pork, lamb), animal fats, and refined carbohydrates.
Medication
The concept that medications can be used to prevent cancer is attractive, and evidence supports their use in a few defined circumstances. In the general population NSAIDs reduce the risk of colorectal cancer however due to the cardiovascular and gastrointestinal side effects they cause overall harm when used for prevention. Aspirin has been found to reduce the risk of death from cancer by about 7%. COX-2 inhibitor may decrease the rate of polyp formation in people with familial adenomatous polyposis however are associated with the same adverse effects as NSAIDs. Daily use of tamoxifen or raloxifene has been demonstrated to reduce the risk of developing breast cancer in high-risk women. The benefit verses harm for 5-alpha-reductase inhibitor such as finasteride is not clear.
Vitamins have not been found to be effective at preventing cancer, although low blood levels of vitamin D are correlated with increased cancer risk. Whether this relationship is causal and vitamin D supplementation is protective is not determined. Beta-Carotene supplementation has been found to increase lung cancer rates in those who are high risk. Folic acid supplementation has not been found effective in preventing colon cancer and may increase colon polyps.
Vaccination
Vaccines have been developed that prevent some infection by some viruses. Human papillomavirus vaccine (Gardasil and Cervarix) decreases the risk of developing cervical cancer. The hepatitis B vaccine prevents infection with hepatitis B virus and thus decreases the risk of liver cancer.
Screening
Unlike diagnosis efforts prompted by symptoms and medical signs, cancer screening involves efforts to detect cancer after it has formed, but before any noticeable symptoms appear.This may involve physical examination, blood or urine tests, or medical imaging.
Cancer screening is currently not possible for many types of cancers, and even when tests are available, they may not be recommended for everyone. Universal screening or mass screening involves screening everyone. Selective screening identifies people who are known to be at higher risk of developing cancer, such as people with a family history of cancer.Several factors are considered to determine whether the benefits of screening outweigh the risks and the costs of screening. These factors include:
Possible harms from the screening test: for example, X-ray images involve exposure to potentially harmful ionizing radiation.
The likelihood of the test correctly identifying cancer.
The likelihood of cancer being present: Screening is not normally useful for rare cancers.
Possible harms from follow-up procedures.
Whether suitable treatment is available.
Whether early detection improves treatment outcomes.
Whether the cancer will ever need treatment.
Whether the test is acceptable to the people: If a screening test is too burdensome (for example, being extremely painful), then people will refuse to participate.
Recommendations
The U.S. Preventive Services Task Force (USPSTF) strongly recommends cervical cancer screening in women who are sexually active and have a cervix at least until the age of 65. They recommend that Americans be screened for colorectal cancer via fecal occult blood testing, sigmoidoscopy, or colonoscopy starting at age 50 until age 75. There is insufficient evidence to recommend for or against screening for skin cancer, oral cancer, lung cancer, or prostate cancer in men under 75. Routine screening is not recommended for bladder cancer, testicular cancer, ovarian cancer, pancreatic cancer, or prostate cancer.
The USPSTF recommends mammography for breast cancer screening every two years for those 50–74 years old; however, they do not recommend either breast self-examination or clinical breast examination. A 2011 Cochrane review came to slightly different conclusions with respect to breast cancer screening stating that routine mammography may do more harm than good.
Japan screens for gastric cancer using photofluorography due to the high incidence there.
Genes - the DNA type
Cells can experience uncontrolled growth if there are damages or mutations to DNA, and therefore, damage to the genes involved in cell division. Four key types of gene are responsible for the cell division process: oncogenes tell cells when to divide, tumor suppressor genes tell cells when not to divide, suicide genes control apoptosis and tell the cell to kill itself if something goes wrong, and DNA-repair genes instruct a cell to repair damaged DNA.
Cancer occurs when a cell's gene mutations make the cell unable to correct DNA damage and unable to commit suicide. Similarly, cancer is a result of mutations that inhibit oncogene and tumor suppressor gene function, leading to uncontrollable cell growth.
Carcinogens
Carcinogens are a class of substances that are directly responsible for damaging DNA, promoting or aiding cancer. Tobacco, asbestos, arsenic, radiation such as gamma and x-rays, the sun, and compounds in car exhaust fumes are all examples of carcinogens. When our bodies are exposed to carcinogens, free radicals are formed that try to steal electrons from other molecules in the body. Theses free radicals damage cells and affect their ability to function normally.
Genes - the family type
Cancer can be the result of a genetic predisposition that is inherited from family members. It is possible to be born with certain genetic mutations or a fault in a gene that makes one statistically more likely to develop cancer later in life.
What are the symptoms of cancer?
Cancer symptoms are quite varied and depend on where the cancer is located, where it has spread, and how big the tumor is. Some cancers can be felt or seen through the skin - a lump on the breast or testicle can be an indicator of cancer in those locations. Skin cancer (melanoma) is often noted by a change in a wart or mole on the skin. Some oral cancers present white patches inside the mouth or white spots on the tongue.
Other cancers have symptoms that are less physically apparent. Some brain tumors tend to present symptoms early in the disease as they affect important cognitive functions. Pancreas cancers are usually too small to cause symptoms until they cause pain by pushing against nearby nerves or interfere with liver function to cause a yellowing of the skin and eyes called jaundice. Symptoms also can be created as a tumor grows and pushes against organs and blood vessels. For example, colon cancers lead to symptoms such as constipation, diarrhea, and changes in stool size. Bladder or prostate cancers cause changes in bladder function such as more frequent or infrequent urination.
As cancer cells use the body's energy and interfere with normal hormone function, it is possible to present symptoms such as fever, fatigue, excessive sweating, anemia, and unexplained weight loss. However, these symptoms are common in several other maladies as well. For example, coughing and hoarseness can point to lung or throat cancer as well as several other conditions.
When cancer spreads, or metastasizes, additional symptoms can present themselves in the newly affected area. Swollen or enlarged lymph nodes are common and likely to be present early. If cancer spreads to the brain, patients may experience vertigo, headaches, or seizures. Spreading to the lungs may cause coughing and shortness of breath. In addition, the liver may become enlarged and cause jaundice and bones can become painful, brittle, and break easily. Symptoms of metastasis ultimately depend on the location to which the cancer has spread.
How is cancer classified?
There are five broad groups that are used to classify cancer.
1.       Carcinomas are characterized by cells that cover internal and external parts of the body such as lung, breast, and colon cancer.
2.       Sarcomas are characterized by cells that are located in bone, cartilage, fat, connective tissue, muscle, and other supportive tissues.
3.       Lymphomas are cancers that begin in the lymph nodes and immune system tissues.
4.       Leukemias are cancers that begin in the bone marrow and often accumulate in the bloodstream.
5.       Adenomas are cancers that arise in the thyroid, the pituitary gland, the adrenal gland, and other glandular tissues.
Cancers are often referred to by terms that contain a prefix related to the cell type in which the cancer originated and a suffix such as -sarcoma, -carcinoma, or just -oma. Common prefixes include:
§  Adeno- = gland
§  Chondro- = cartilage
§  Erythro- = red blood cell
§  Hemangio- = blood vessels
§  Hepato- = liver
§  Lipo- = fat
§  Lympho- = white blood cell

§  Melano- = pigment cell
§  Myelo- = bone marrow
§  Myo- = muscle
§  Osteo- = bone
§  Uro- = bladder
§  Retino- = eye
§  Neuro- = brain


How is cancer diagnosed and staged?
Cancer testingEarly detection of cancer can greatly improve the odds of successful treatment and survival. Physicians use information from symptoms and several other procedures to diagnose cancer. Imaging techniques such as X-rays, CT scans, MRI scans, PET scans, and ultrasound scans are used regularly in order to detect where a tumor is located and what organs may be affected by it. Doctors may also conduct an endoscopy, which is a procedure that uses a thin tube with a camera and light at one end, to look for abnormalities inside the body.
Extracting cancer cells and looking at them under a microscope is the only absolute way to diagnose cancer. This procedure is called a biopsy. Other types of molecular diagnostic tests are frequently employed as well. Physicians will analyze your body's sugars, fats, proteins, and DNA at the molecular level. For example, cancerous prostate cells release a higher level of a chemical called PSA (prostate-specific antigen) into the bloodstream that can be detected by a blood test. Molecular diagnostics, biopsies, and imaging techniques are all used together to diagnose cancer.
After a diagnosis is made, doctors find out how far the cancer has spread and determine the stage of the cancer. The stage determines which choices will be available for treatment and informs prognoses. The most common cancer staging method is called the TNM system. T (1-4) indicates the size and direct extent of the primary tumor, N (0-3) indicates the degree to which the cancer has spread to nearby lymph nodes, and M (0-1) indicates whether the cancer has metastasized to other organs in the body. A small tumor that has not spread to lymph nodes or distant organs may be staged as (T1, N0, M0), for example.
TNM descriptions then lead to a simpler categorization of stages, from 0 to 4, where lower numbers indicate that the cancer has spread less. While most Stage 1 tumors are curable, most Stage 4 tumors are inoperable or untreatable.
How is cancer treated?
Cancer treatment depends on the type of cancer, the stage of the cancer (how much it has spread), age, health status, and additional personal characteristics. There is no single treatment for cancer, and patients often receive a combination of therapies and palliative care. Treatments usually fall into one of the following categories: surgery, radiation, chemotherapy, immunotherapy, hormone therapy, or gene therapy.


Surgery
Surgery is the oldest known treatment for cancer. If a cancer has not metastasized, it is possible to completely cure a patient by surgically removing the cancer from the body. This is often seen in the removal of the prostate or a breast or testicle. After the disease has spread, however, it is nearly impossible to remove all of the cancer cells. Surgery may also be instrumental in helping to control symptoms such as bowel obstruction or spinal cord compression.
Innovations continue to be developed to aid the surgical process, such as the . Currently, when a tumor is removed surgeons also take out a “margin” of healthy tissue to make sure no malignant cells are left behind. This usually means keeping the patients under general anesthetic for an extra 30 minutes while tissue samples are tested in the lab for “clear margins”. If there are no clear margins, the surgeon has to go back in and remove more tissue (if possible). Scientists from Imperial College London say the iKnife may remove the need for sending samples to the lab.
Radiotherapy treatmentRadiation
Radiation treatment, also known as radiotherapy, destroys cancer by focusing high-energy rays on the cancer cells. This causes damage to the molecules that make up the cancer cells and leads them to commit suicide. Radiotherapy utilizes high-energy gamma-rays that are emitted from metals such as radium or high-energy x-rays that are created in a special machine. Early radiation treatments caused severe side-effects because the energy beams would damage normal, healthy tissue, but technologies have improved so that beams can be more accurately targeted. Radiotherapy is used as a standalone treatment to shrink a tumor or destroy cancer cells (including those associated with leukemia and lymphoma), and it is also used in combination with other cancer treatments.
Chemotherapy
Chemotherapy utilizes chemicals that interfere with the cell division process - damaging proteins or DNA - so that cancer cells will commit suicide. These treatments target any rapidly dividing cells (not necessarily just cancer cells), but normal cells usually can recover from any chemical-induced damage while cancer cells cannot. Chemotherapy is generally used to treat cancer that has spread or metastasized because the medicines travel throughout the entire body. It is a necessary treatment for some forms of leukemia and lymphoma. Chemotherapy treatment occurs in cycles so the body has time to heal between doses. However, there are still common side effects such as hair loss, nausea, fatigue, and vomiting. Combination therapies often include multiple types of chemotherapy or chemotherapy combined with other treatment options.

Immunotherapy
Immunotherapy aims to get the body's immune system to fight the tumor. Local immunotherapy injects a treatment into an affected area, for example, to cause inflammation that causes a tumor to shrink. Systemic immunotherapy treats the whole body by administering an agent such as the protein interferon alpha that can shrink tumors. Immunotherapy can also be considered non-specific if it improves cancer-fighting abilities by stimulating the entire immune system, and it can be considered targeted if the treatment specifically tells the immune system to destroy cancer cells. These therapies are relatively young, but researchers have had success with treatments that introduce antibodies to the body that inhibit the growth of breast cancer cells. Bone marrow transplantation ( hematopoetic stem cell transplantation ) can also be considered immunotherapy because the donor's immune cells will often attack the tumor or cancer cells that are present in the host.


Hormone therapy
Several cancers have been linked to some types of hormones, most notably breast and prostate cancer. Hormone therapy is designed to alter hormone production in the body so that cancer cells stop growing or are killed completely. Breast cancer hormone therapies often focus on reducing estrogen levels (a common drug for this is tamoxifen) and prostate cancer hormone therapies often focus on reducing testosterone levels. In addition, some leukemia and lymphoma cases can be treated with the hormone cortisone.
Gene therapy
The goal of gene therapy is to replace damaged genes with ones that work to address a root cause of cancer: damage to DNA. For example, researchers are trying to replace the damaged gene that signals cells to stop dividing (the p53 gene) with a copy of a working gene. Other gene-based therapies focus on further damaging cancer cell DNA to the point where the cell commits suicide. Gene therapy is a very young field and has not yet resulted in any successful treatments.
Using cancer-specific immune system cells to treat cancer
Scientists from the RIKEN Research Centre for Allergy and Immunology in Yokohama, Japan, explained in the journal Cell Stem Cell (January 2013 issue
The authors added that their study has shown that it is possible to clone versions of the patients’ own cells to enhance their immune system so that cancer cells could be destroyed naturally.
Hiroshi Kawamoto and team created cancer-specific killer T-lymphocytes from iPSCs. They started off with mature T-lymphocytes which were specific for a type of skin cancer and reprogrammed them into iPSCs with the help of “Yamanaka factors”. The iPSCs eventually turned into fully active, cancer-specific T-lymphocytes - in other words, cells that target and destroy cancer cells.


How can cancer be prevented?
Cancers that are closely linked to certain behaviors are the easiest to prevent. For example, choosing not to smoke tobacco or drink alcohol significantly lower the risk of several types of cancer - most notably lung, throat, mouth, and liver cancer. Even if you are a current tobacco user, quitting can still greatly reduce your chances of getting cancer.
Skin cancer can be prevented by staying in the shade, protecting yourself with a hat and shirt when in the sun, and using sunscreen. Diet is also an important part of cancer prevention since what we eat has been linked to the disease. Physicians recommend diets that are low in fat and rich in fresh fruits and vegetables and whole grains.
Certain vaccinations have been associated with the prevention of some cancers. For example, many women receive a vaccination for the human papillomavirus because of the virus's relationship with cervical cancer. Hepatitis B vaccines prevent the hepatitis B virus, which can cause liver cancer.
Some cancer prevention is based on systematic screening in order to detect small irregularities or tumors as early as possible even if there are no clear symptoms present. Breast self-examination, mammograms, testicular self-examination, and Pap smears are common screening methods for various cancers.
Researchers from Northwestern University Feinberg School of Medicine in Chicago reported in the journal Circulation. They include being physically active, eating a healthy diet, controlling cholesterol, managing blood pressure, reducing blood sugar and not smoking.
Targeting cancers for new drug therapies
Researchers at The Institute of Cancer Research reported in the journal Nature Reviews Drug Discovery (January 2013 issue) that they have found a new way of rapidly prioritizing the best druggable targets online. They managed to identify 46 previously overlooked targets.
The researchers used the cancer database together with a tool and were able to compare up to 500 drug targets in a matter of minutes. .
The scientists analyzed 479 cancer genes to determine which ones were potential targets for medications. Their approach was effective - they found 46 new potentially “druggable” cancer proteins.
Not only will this approach lead to much more targeted cancer drugs, but also considerably cheaper ones, the authors added.

Cancer Types


Cancer
Nasopharyngeal Cancer
Neuroblastoma
Non-Hodgkin Lymphoma
Non-Hodgkin Lymphoma In Children
Oral Cavity and Oropharyngeal Cancer
Osteosarcoma
Ovarian Cancer
Pancreatic Cancer
Penile Cancer

Pituitary Tumors
Prostate Cancer
Renal Cancer
Retinoblastoma

Rhabdomyosarcoma
Salivary Gland Cancer
Sarcoma - Adult Soft Tissue Cancer
Skin Cancer
Skin Cancer - Basal and Squamous Cell
Skin Cancer - Melanoma
Small Intestine Cancer
Stomach Cancer
Testicular Cancer
Thymus Cancer
Thyroid Cancer
Uterine Sarcoma
Vaginal Cancer
Vulvar Cancer
Waldenstrom Macroglobulinemia
Wilms Tumor
Eye Cancer
Gallbladder Cancer
Gastric Cancer
Gastrointestinal Carcinoid Tumors
Gastrointestinal Stromal Tumor (GIST)

Lymphoma of the Skin
Malignant Mesothelioma
Multiple Myeloma
Nasal Cavity and Paranasal Sinus
Myelodysplastic Syndrome


Adrenal Cancer
Anal Cancer
Aplastic Anemia
Bile Duct Cancer
Bladder Cancer
Bone Cancer
Brain/CNS Tumors In Adults
Brain/CNS Tumors In Children
Breast Cancer
Breast Cancer In Men
Cancer in Children
Cancer of Unknown Primary
Castleman Disease
Cervical Cancer
Colon/Rectum Cancer
Endometrial Cancer

Esophagus Cancer
Ewing Family Of Tumors Gestational Trophoblastic Disease
Hodgkin Disease

Kaposi Sarcoma
Kidney Cancer
Laryngeal and Hypopharyngeal Cancer
Leukemia
Leukemia - Acute Lymphocytic (ALL) in Adults
Leukemia - Acute Myeloid (AML)
Leukemia - Chronic Lymphocytic (CLL)
Leukemia - Chronic Myeloid (CML)
Leukemia - Chronic Myelomonocytic (CMML)
Leukemia in Children
Liver Cancer
Lung Cancer
Lung Cancer - Non-Small Cell
Lung Cancer - Small Cell

Lung Carcinoid Tumor
Lymphoma
Lymphoma - Hodgkin
Lymphoma - Non-Hodgkin
Lymphoma - Non-Hodgkin in Children


References :-
medicalnewstoday
American Cancer Society
Cancer Research, UK
Wikipedia
Centers for Disease Control and Prevention: http://www.cdc.gov/nccdphp/dcpc
Learn about brain cancer symptoms and signs and when to seek medical care.
Home Care for Brain Cancer
Home care is an important part of brain cancer treatment. Here's help thinking ahead.
Colorectal Polyps and Cancer
WebMD provides an overview of colorectal polyps and cancer, the second leading cause of cancer death in the U.S.

Cancer

3 comments:

HOW I GOT CURED OF HERPES VIRUS.

Hello everyone out there, i am here to give my testimony about a herbalist called dr imoloa. i was infected with herpes simplex virus 2 in 2013, i went to many hospitals for cure but there was no solution, so i was thinking on how i can get a solution out so that my body can be okay. one day i was in the pool side browsing and thinking of where i can get a solution. i go through many website were i saw so many testimonies about dr imoloa on how he cured them. i did not believe but i decided to give him a try, i contacted him and he prepared the herpes for me which i received through DHL courier service. i took it for two weeks after then he instructed me to go for check up, after the test i was confirmed herpes negative. am so free and happy. so, if you have problem or you are infected with any disease kindly contact him on email drimolaherbalmademedicine@gmail.com. or / whatssapp --+2347081986098.
This testimony serve as an expression of my gratitude. he also have
herbal cure for, FEVER, DIARRHEA, FATIGUE, MUSCLE ACHES, LUPUS, SKIN CANCER, PENILE CANCER, PANCREATIC CANCER, DISEASE, JOINT PAIN, POLIO DISEASE, PARKINSON'S DISEASE, ALZHEIMER'S DISEASE, CYSTIC FIBROSIS, SCHIZOPHRENIA, CORNEAL ULCER, EPILEPSY, FETAL ALCOHOL SPECTRUM, LICHEN PLANUS, COLD SORE, SHINGLES, CANCER, HEPATITIS A, B. DIABETES 1/2, HIV/AIDS, CHRONIC PANCERATIC, CHLAMYDIA, ZIKA VIRUS, EMPHYSEMA, LOW SPERM COUNT, ENZYMA, COUGH, ULCER, ARTHRITIS, LEUKAEMIA, LYME DISEASE, ASTHMA, IMPOTENCE, BARENESS/INFERTILITY, WEAK ERECTION, PENIS ENLARGEMENT. AND SO ON.

Lung cancer often goes unnoticed in its early stages. As the disease develops, a persistent cough  develop and chronic cough worsen. include chest pain, shortness of breath, hoarseness, bloody fluid coughed up from the respiratory tract, and frequent bouts of bronchitis or pneumonia. Sometimes the first was bone pain, headaches, dizziness,I was so piss off and tired of my life until i read about Dr Itua herbal medicine on blogspot i really thought it was scam when i first contacted him so little time i think about it and bought the herbal medicine which i took for three weeks and i was totally cured his treatment is so unique,I never thought i will be able to be free from Lung Cancer.But not only this Lung Cancer This great man can cure,Dr Itua also told me he can cure such diseases like... COLORECTAL CANCER,Brain cancer,Esophageal cancer,Gallbladder cancer,Gestational trophoblastic disease,Head and neck cancer, BLADDER CANCER, PROSTATE CANCER, KIDNEY CANCER, LUNG CANCER, Lupus,SKIN CANCER,Glaucoma., Cataracts,Macular degeneration,Cardiovascular disease,Lung disease.Enlarged prostate,Osteoporosis.Alzheimer's disease,Ovarian cancer,Sinus cancer,Skin cancer,Soft tissue sarcoma,Spinal cancer,Stomach cancer,Testicular cancer,Throat cancer,Thyroid Cancer,Dementia. UTERINE CANCER,Pancreative Cancer, LEUKEMIA,HIV/AIDS,OVARIAN CANCER,BLOOD CANCER,Vulvar cancer,MEN/WOMAN INFERTILITY,BURKITT LYMPHOMA - NON-HODGKIN.BRONNCHIAL TUMORS, BRAIN TUMORS,BILE DUCT CANCER,BONE CANCER,VAGINAL CANCER,Cervical Cancer,HERPES VIRUS,LOVE SPELL,HEPATITIS,HE'S A GREAT HERBAL DOCTOR.HERE HIS CONTACT EMAIL::: drituaherbalcenter@gmail.com/. WHATSAPP:::+2348149277967

Good news this is to everyone out there with different health challenges, as I know there are still a lot of people suffering from different health issues and are therefore looking for solutions. I bring you Good news. There is a man called Dr ehiaguna a herbal practitioner who helped cure me from HSV (2), i had suffered from this diseases for the past 5 years and i have spent so much money trying to survive from it. I got my healing by taking the herbal medicine Dr ehiaguna sent to me to drink for about 14 days . 3 days after completion of the dosage, I went for a medical checkup and I was tested free from HSV. all thanks to God for leading me to Dr ehiaguna who was able to cure me completely from this deadly diseases, I’m sharing this so that other people can know of this great healer called Dr ehiaguna because I got to know him through elizabeth who he cured from HIV. I was made to understand that he can cure several other deadly diseases and infections. Don’t die in ignorance or silent and don’t let that illness take your life. Contact Dr ehiaguna through his emaildrehiaguna@gmail.com You can also whatsapp/call him on:+2348073908953 .He cure all forms of disease {1}HIV/AIDS {2}DIABETES {3}EPILEPSY {4} BLOOD CANCER {5} HPV {6} BRAIN TUMOR {7} HEPATITIS {8}COPD{9} SICKLE AND ANAEMIA.etc Be kind enough to share as you received.  

Post a Comment

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites