Monday, December 16, 2013

Ultrasound

Ultrasound 



Ultrasound is an oscillating sound pressure wave with a frequency greater than the upper limit of the human hearing range. Ultrasound is thus not separated from 'normal' (audible) sound based on differences in physical properties, only the fact that humans cannot hear it. Although this limit varies from person to person, it is approximately 20 kilohertz (20,000 hertz) in healthy, young adults. Ultrasound devices operate with frequencies from 20 kHz up to several gigahertz.
Ultrasound is used in many different fields. Ultrasonic devices are used to detect objects and measure distances. Ultrasonic imaging (sonography) is used in both veterinary medicine and human medicine. In the nondestructive testing of products and structures, ultrasound is used to detect invisible flaws. Industrially, ultrasound is used for cleaning and for mixing, and to accelerate chemical processes. Organisms such as bats and porpoises use ultrasound for locating prey and obstacles.
Ultrasound image of a fetus in the womb, viewed at 12 weeks of pregnancy (bidimensional-scan)
An ultrasonic examination in East Germany, 1990
Ultrasonics is the application of ultrasound. Ultrasound can be used for medical imaging, detection, measurement and cleaning. At higher power levels, ultrasonics is useful for changing the chemical properties of substances.
History
Acoustics, the science of sound, starts as far back as Pythagoras in the 6th century BC, who wrote on the mathematical properties of stringed instruments. Sir Francis Galton constructed a whistle producing ultrasound in 1893. The first technological application of ultrasound was an attempt to detect submarines by Paul Langevin in 1917. The piezoelectric effect, discovered by Jacques and Pierre Curie in 1880, was useful in transducers to generate and detect ultrasonic waves in air and water.[2] Echolocation in bats was discovered by Lazzaro Spallanzani in 1794, when he demonstrated that bats hunted and navigated by inaudible sound and not vision.
Perception in humans and animals
Humans
The upper frequency limit in humans (approximately 20 kHz) is due to limitations of the middle ear, which acts as a low-pass filter. Ultrasonic hearing can occur if ultrasound is fed directly into the human skull and reaches the cochlea through bone conduction, without passing through the middle ear.[3]
Children can hear some high-pitched sounds that older adults cannot hear, because in humans the upper limit pitch of hearing tends to decrease with age.[4] An American cell phone company has used this to create ring signals supposedly only able to be heard by younger humans;[5] but many older people can hear the signals, which may be because of the considerable variation of age-related deterioration in the upper hearing threshold. The Mosquito is an electronic device that uses a high pitched frequency to deter loitering by young people.
Some people find high-frequency sounds and ultrasound extremely painful. This is often associated with autism and sensory defensiveness[6] but can also be caused by hyperacusis


Animals
Bats use a variety of ultrasonic ranging (echolocation) techniques to detect their prey. They can detect frequencies beyond 100 kHz, possibly up to 200 kHz.
Many insects have good ultrasonic hearing and most of these are nocturnal insects listening for echolocating bats. This includes many groups of moths, beetles, praying mantids and lacewings. Upon hearing a bat, some insects will make evasive manoeuvres to escape being caught.[8] Ultrasonic frequencies trigger a reflex action in the noctuid moth that cause it to drop slightly in its flight to evade attack.[9]Tiger moths also emit clicks which may disturb bats' echolocation,[10][11] but may also in other cases evade being eaten by advertising the fact that they are poisonous by emitting sound.[12][13]
Dogs with normal hearing can hear ultrasound. A dog whistle exploits this by emitting a high frequency sound to call to a dog. Many such whistles emit sound in the upper audible range of humans, but some, such as the silent whistle, emit ultrasound at a frequency in the range 18–22 kHz.
Toothed whales, including dolphins, can hear ultrasound and use such sounds in their navigational system (biosonar) to orient and capture prey.[14] Porpoises have the highest known upper hearing limit, at around 160 kHz.[15] Several types of fish can detect ultrasound. In the order Clupeiformes, members of the subfamily Alosinae (shad), have been shown to be able to detect sounds up to 180 kHz, while the other subfamilies (e.g. herrings) can hear only up to 4 kHz.
Ultrasound generator/speaker systems are sold as Electronic pest control devices, that claim to frighten away rodents and insects, but there is no scientific evidence that the devices work.

Detection and ranging
Non-contact sensor
An ultrasonic level or sensing system requires no contact with the target. For many processes in the medical, pharmaceutical, military and general industries this is an advantage over inline sensors that may contaminate the liquids inside a vessel or tube or that may be clogged by the product.
Both continuous wave and pulsed systems are used. The principle behind a pulsed-ultrasonic technology is that the transmit signal consists of short bursts of ultrasonic energy. After each burst, the electronics looks for a return signal within a small window of time corresponding to the time it takes for the energy to pass through the vessel. Only a signal received during this window will qualify for additional signal processing.
A popular consumer application of ultrasonic ranging was the Polaroid SX-70 camera which included a light-weight transducer system to focus the camera automatically. Polaroid later licenced this ultrasound technology and it became the basis of a variety of ultrasonic products.
Motion sensors and flow measurement
A common ultrasound application is an automatic door opener, where an ultrasonic sensor detects a person's approach and opens the door. Ultrasonic sensors are also used to detect intruders; the ultrasound can cover a wide area from a single point. The flow in pipes or open channels can be measured by ultrasonic flowmeters, which measure the average velocity of flowing liquid. In rheology, an acoustic rheometer relies on the principle of ultrasound. In fluid mechanics, fluid flow can be measured using an ultrasonic flow meter.




Non-destructive testing

Ultrasonic testing is a type of nondestructive testing commonly used to find flaws in materials and to measure the thickness of objects. Frequencies of 2 to 10 MHz are common but for special purposes other frequencies are used. Inspection may be manual or automated and is an essential part of modern manufacturing processes. Most metals can be inspected as well as plastics and aerospace composites. Lower frequency ultrasound (50–500 kHz) can also be used to inspect less dense materials such as wood, concrete and cement.


Ultrasound inspection of welded joints has been an alternative to radiography for non-destructive testing since the 1960s. Ultrasonic inspection eliminates the use of ionizing radiation, with safety and cost benefits. Ultrasound can also provide additional information such as the depth of flaws in a welded joint. Ultrasonic inspection has progressed from manual methods to computerized systems that automate much of the process. An ultrasonic test of a joint can identify the existence of flaws, measure their size, and identify their location. Not all welded materials are equally amenable to ultrasonic inspection; some materials have a large grain size that produces a high level of background noise in measurements.

0 comments:

Post a Comment

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites